Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25620, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380000

RESUMO

The cooking process is fundamental for bean consumption and to increase the bioavailability of its nutritional components. The study aimed to determine the effect of cooking on bean seed coat through morphological analyses with different microscopy techniques and image analyses. The chemical composition and physical properties of raw black bean (RBB) and cooked black bean (CBB) seeds were determined. The surface and cross-sectional samples were studied by Optical microscopy (OM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The composition of samples showed significant differences after the cooking process. OM images and gray level co-occurrence matrix algorithm (GLCM) analysis indicated that cuticle-deposited minerals significantly influence texture parameters. Seed coat surface ESEM images showed cluster cracking. Texture fractal dimension and lacunarity parameters were effective in quantitatively assessing cracks on CBB. AFM results showed arithmetic average roughness (Ra) (121.67 nm) and quadratic average roughness (Rq) (149.94 nm). The cross-sectional ESEM images showed a decrease in seed coat thickness. The CLSM results showed an increased availability of lipids along the different multilayer tissues in CBB. The results generated from this research work offer a valuable potential to carry out a strict control of bean seed cooking at industrial level, since the structural changes and biochemical components (cell wall, lipids and protein bodies) that occur in the different tissues of the seed are able to migrate from the inside to the outside through the cracks generated in the multilayer structure that are evidenced by the microscopic techniques used.

2.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202766

RESUMO

Green tomato (Physalis ixocarpa) is a specie native to Mexico, and it is known as "tomatillo" or "husk tomato". The fruit contains vitamins, minerals, phenolic compounds, and steroidal lactones, presenting antimicrobial activity and antinarcotic effects. Therefore, it is not only used in traditional Mexican cuisine, but also in traditional medicine to relieve some discomforts such as fever, cough, and amygdalitis. However, it is a perishable fruit whose shelf life is very short. As a part of the peel, cuticle, and epicuticular waxes represent the most important part in plant protection, and the specific composition and structural characterization are significant to know how this protective biopolymer keeps quality characteristics in fresh fruits. P. ixocarpa cutin was obtained by enzymatic treatments (cellulase, hemicellulose, and pectinase) and different concentrations of TFA, and studied through Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CPMAS 13C NMR), Ultra-High Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-MS), and was morphologically characterized by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). The main constituents identified under the basis of UHPLC-MS analysis were 9,10,18-trihydroxy-octadecanoic acid and 9,10-epoxy-18-hydroxy-octadecanoic acid with 44.7 and 37.5%, respectively. The C16 absence and low occurrence of phenolic compounds, besides the presence of glandular trichomes, which do not allow a continuous layer on the surface of the fruit, could be related to a lower shelf life compared with other common fruits such as tomato (Solanum lycopersicum).


Assuntos
Lipídeos de Membrana , Physalis , Solanum lycopersicum , Frutas , México , Fenóis
3.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297649

RESUMO

The objective of this study was to assess the effectiveness of liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) as a source of squalene in the prevention of melanoma skin cancer in an allograft mice model. Tumors were induced by transplanting melanoma B16-F10 cells into the mice. The most effective treatments were those including UM + LunLip, with no difference between the lunasin concentrations (15 or 30 mg/kg body weight); however, these treatments were statistically different from the tumor-bearing untreated control (G3) (p < 0.05). The groups treated with topical application showed significant inhibition (68%, p < 0.05) compared to G3. The groups treated with subcutaneous injections showed significant inhibition (up to 99%, p < 0.05) in G3. During tumor development, UM + LunLip treatments under-expressed Ki-67 (0.2-fold compared to G3), glycogen synthase kinase-3ß (0.1-fold compared to G3), and overexpressed caspase-3 (30-fold compared to G3). In addition, larger tumors showed larger necrotic areas (38% with respect to the total tumor) (p < 0.0001). In conclusion, the UM + LunLip treatment was effective when applied either subcutaneously or topically in the melanoma tumor-developing groups, as it slowed down cell proliferation and activated apoptosis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36141952

RESUMO

Inflammation is a normal response in defense to agents that may cause damage to the human body. When inflammation becomes chronic, reactive oxygen species (ROS) are produced; which could lead to diseases such as cancer. The aim was to assess liposomes' antioxidant and anti-inflammatory capacity loaded with amaranth unsaponifiable matter and soybean lunasin (UM + LunLip) in an in vitro model using fibroblasts and macrophages. To evaluate ROS production, fibroblasts CHON-002 ABAP were added to promote ROS production; and the cells were treated with UM + LunLip. For inflammation markers production, lipopolysaccharides (LPS)-stimulated RAW 264.7 and peritoneal macrophages were treated with empty liposomes (EmLip), liposomes loaded with unsaponifiable matter (UMLip), liposomes loaded with lunasin (LunLip), and UM + LunLip. ROS production was significantly decreased by 77% (p < 0.05) when fibroblasts were treated with UM + LunLip at 2 mg lunasin/mL compared with the control treated with ABAP. Treatment with UMLip was the most effective in reducing tumor necrosis factor-α (71-90%) and interleukin-6 (43-55%, p < 0.001). Both liposomes containing unsaponifiable matter (UMLip and UM + LunLip) were more effective than EmLip or LunLip. In conclusion, amaranth unsaponifiable matter-loaded liposomes are effective in decreasing pro-inflammatory cytokine production.


Assuntos
Glycine max , Lipopolissacarídeos , Amidinas , Anti-Inflamatórios , Antioxidantes/farmacologia , Fibroblastos , Humanos , Inflamação , Interleucina-6 , Lipossomos , Macrófagos , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
5.
Nanomaterials (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34443791

RESUMO

Amaranthus hypochondriacus is a source of molecules with reported health benefits such as antioxidant activity and cancer prevention. The objective of this research was to optimize the conditions for preparing a liposome formulation using amaranth unsaponifiable matter as a source of squalene in order to minimize the particle size and to maximize the encapsulation efficiency of liposomes for carrying and delivering soybean lunasin into melanoma cell lines. Amaranth oil was extracted using supercritical dioxide carbon extraction (55.2 MPa pressure, 80 °C temperature, solvent (CO2)-to-feed (oil) ratio of 20). The extracted oil from amaranth was used to obtain the unsaponifiable enriched content of squalene, which was incorporated into liposomes. A Box-Behnken response surface methodology design was used to optimize the liposome formulation containing the unsaponifiable matter, once liposomes were optimized. Soybean lunasin was loaded into the liposomes and tested on A-375 and B16-F10 melanoma cells. The squalene concentration in the extracted oil was 36.64 ± 0.64 g/ 100 g of oil. The particle size in liposomes was between 115.8 and 163.1 nm; the squalene encapsulation efficiency ranged from 33.14% to 76.08%. The optimized liposome formulation contained 15.27 mg of phospholipids and 1.1 mg of unsaponifiable matter. Cell viability was affected by the liposome formulation with a half-maximum inhibitory concentration (IC50) equivalent to 225 µM in B16-F10 and 215 µM in A-375. The liposomes formulated with lunasin achieved 82.14 ± 3.34% lunasin encapsulation efficiency and improved efficacy by decreasing lunasin IC50 by 31.81% in B16-F10 and by 41.89% in A-375 compared with unencapsulated lunasin.

6.
Food Sci Nutr ; 9(7): 4007-4017, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262754

RESUMO

The nopal cactus is an essential part of the Mexican diet and culture. The per capita consumption of young cladodes averages annually to 6.4 kg across the nation. In addition to contributing to the country's food culture, the nopal is considered a food with functional characteristics since, in addition to providing fiber, an important group of polyphenolic compounds is present, which has given cladodes to be considered a healthy food, for what they have been incorporated into the diet of Mexican people and many other countries worldwide. Research suggests that polyphenols from cladodes act as antioxidants and antidiabetics. This review studies the main phenolic components in cladodes and summarizes both conventional and novel methods to identify them.

7.
J Food Sci ; 86(3): 643-655, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586793

RESUMO

The common bean (Phaseolus vulgaris L.) represents one of the main crops for human consumption, due to its nutritional and functional qualities. Phenolic compounds have beneficial health effects, and beans are an essential source of these molecules, being found mainly in the seed coat and its color depends on the concentration and type of phenolic compounds present. The bean during storage and processing, such as cooking, germination, extrusion, and fermentation, undergoes physical, chemical, and structural changes that affect the bioavailability of its nutrients; these changes are related to the interactions between phenolic compounds and other components of the food matrix. This review provides information about the identification and quantification of phenolic compounds present in beans and the changes they undergo during processing. It also includes information on the interactions between the phenolic compounds and the components of the bean's cell wall and the analytical methods used to identify the interactions of phenolic compounds with macromolecules.


Assuntos
Manipulação de Alimentos , Phaseolus/química , Fenóis/química , Humanos , Substâncias Macromoleculares/química
8.
Microsc Res Tech ; 84(1): 12-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32905658

RESUMO

The cuajilote (Parmentiera edulis D.C.) tree produces fibrous fruits with a high content of lignocellulosic compounds. However, this fruit and their fibers have been scarcely studied. For this reason, an integral study of their cellular architecture, physicochemical, micromechanical, and structural properties in two maturity stages were carried out. Physicochemical tests, light, confocal and electron microscopy, microindentation, and X-ray diffraction were used for the characterization of fruit and their fibers. Chemical analysis showed that the unripe fruits have the highest cellulose content (42.17%), but in ripe fruit the cellulose content decreases (32.76%) while lignin content increases from 35.26 to 40.79%, caused by the lignification of the sclerenchyma fibers. Microstructural and micromechanical studies in the different regions of the fruit provided relevant information about its cellular architecture, distribution of lignocellulosic compounds and its role in the micromechanical properties of their fibers. The thickening cell wall of sclerenchyma fibers was caused by the cellular lignification of the ripe fruits. According to the physicochemical and structural studies, cuajilote fibers are comparable to other fibers obtained from crops rich in lignocellulosic compounds. The current study provided new knowledge about the cellular architecture of fruit and criteria for selecting the ripening stage adequate for the extraction of cellulose or lignin. Furthermore, information regarding the micromechanical properties of their fibers and which structural arrangement could be more convenient for mechanical reinforcement of biodegradable materials was obtained.


Assuntos
Frutas , Microscopia , Parede Celular , Celulose , Lignina
9.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339233

RESUMO

The cuticle, a protective cuticular barrier present in almost all primary aerial plant organs, has a composition that varies between plant species. As a part of the apple peel, cuticle and epicuticular waxes have an important role in the skin appearance and quality characteristic in fresh fruits destined for human consumption. The specific composition and structural characteristics of cutin from two apple varieties, "golden delicious" and "red delicious", were obtained by enzymatic protocols and studied by means of cross polarization magic angle spinning nuclear magnetic resonance (CP-MAS 13C NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and mass spectrometry, and were morphologically characterized by specialized microscopy techniques (atomic force microscopy (AFM), confocal laser scanning microscopy (CLMS), and scanning electron microscopy (SEM)). According to CP-MAS 13C NMR and ATR-FTIR analysis, cutins from both varieties are mainly composed of aliphatics and a small difference is shown between them. This was corroborated from the hydrolyzed cutins analysis by mass spectrometry, where 9,10,18-trihydroxy-octadecanoic acid; 10,20-Dihydroxy-icosanoic acid; 10,16-dihydroxy hexadecenoic acid (10,16-DHPA); 9,10-epoxy-12-octadecenoic acid; and 9,10-epoxy-18-hydroxy-12-octadecenoic acid were the main monomers isolated. The low presence of polysaccharides and phenolics in the cutins obtained could be related to the low elastic behavior of this biocomposite and the presence of cracks in the apple cutin's surface. These cracks have an average depth of 1.57 µm ± 0.57 in the golden apple, and 1.77 µm ± 0.64 in those found in the red apple. The results obtained in this work may facilitate a better understanding that mechanical properties of the apple fruit skin are mainly related to the specific aliphatic composition of cutin and help to much better investigate the formation of microcracks, an important symptom of russet formation.


Assuntos
Malus/metabolismo , Lipídeos de Membrana/análise , Frutas/metabolismo , Hidrólise , Hidróxidos/química , Ácido Linoleico/análise , Ácido Linoleico/química , Lipídeos de Membrana/química , Microscopia de Força Atômica , Microscopia Confocal , Ácido Palmítico/análise , Ácido Palmítico/química , Compostos de Potássio/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Int J Nanomedicine ; 15: 7627-7650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116492

RESUMO

The skin is the largest organ in the human body, providing a barrier to the external environment. It is composed of three layers: epidermis, dermis and hypodermis. The most external epidermis is exposed to stress factors that may lead to skin conditions such as photo-aging and skin cancer. Some treatments for skin disease utilize the incorporation of drugs or bioactive compounds into nanocarriers known as liposomes. Liposomes are membranes whose sizes range from nano to micrometers and are composed mostly of phospholipids and cholesterol, forming similar structures to cell membranes. Thus, skin treatments with liposomes have lower toxicity in comparison to traditional treatment routes such as parenteral and oral. Furthermore, addition of edge activators to the liposomes decreases the rigidity of the bilayer structure making it deformable, thereby improving skin permeability. Liposomes are composed of an aqueous core and a lipidic bilayer, which confers their amphiphilic property. Thus, they can carry hydrophobic and hydrophilic compounds, even simultaneously. Current applications of these nanocarriers are mainly in the cosmetic and pharmaceutic industries. Nevertheless, new research has revealed promising results regarding the effectiveness of liposomes for transporting bioactive compounds through the skin. Liposomes have been well studied; however, additional research is needed on the efficacy of liposomes loaded with bioactive peptides for skin delivery. The objective of this review is to provide an up-to-date description of existing techniques for the development of liposomes and their use as transporters of bioactive compounds in skin conditions such as melanoma and skin inflammation. Furthermore, to gain an understanding of the behavior of liposomes during the process of skin delivery of bioactive compounds into skin cells.


Assuntos
Inflamação/patologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Pele/patologia , Transporte Biológico , Humanos , Lipossomos/ultraestrutura , Absorção Cutânea
11.
Foods ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992589

RESUMO

Vanilla is one of the most popular species in the world. Its main compound, vanillin, is responsible for its characteristic aroma and flavor and its antioxidant and biological properties. Vanillin is very unstable in the presence of oxygen, light, and humidity, which complicates its use and preservation. Therefore, to solve this problem, this study aimed to develop vanilla oleoresin microcapsules. Vanilla oleoresin was obtained with supercritical carbon dioxide and microencapsulated by complex coacervation and subsequent spray drying (100 °C/60 °C inlet/outlet temperature). The optimal conditions for the complex coacervation process were 0.34% chitosan, 1.7% gum Arabic, 5.29 pH, and an oleoresin:wall material ratio of 1:2.5. Fourier Transform Infrared Spectroscopy (FT-IR) analysis of the coacervates before and after spray drying revealed the presence of the functional group C=N (associated with carbonyl groups of vanillin and amino groups of chitosan), indicating that microencapsulation by complex coacervation-spray drying was successful. The retention and encapsulation efficiencies were 84.89 ± 1.94% and 69.20 ± 1.79%. The microcapsules obtained from vanilla oleoresin had high vanillin concentration and the presence of other volatile compounds and essential fatty acids. All this improves the aroma and flavor of the product, increasing its consumption and application in various food matrices.

12.
Antioxidants (Basel) ; 9(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471228

RESUMO

A full factorial design (ascorbic acid/l-cysteine inhibitors, temperature, and time as factors) study was conducted to enhance inhibition of polyphenol oxidase (PPO) activity without decreasing cocoa polyphenol concentrations. The data obtained were modelled through a new equation, represented by Γ, which correlates both high polyphenol content with reduced specific PPO activity. At optimized values (70 mM inhibitory solution at 96 °C for 6.4 min, Γ = 11.6), 93.3% PPO inhibition and total polyphenol of 94.9 mg GAE/g were obtained. In addition, microscopy images confirmed the cell morphological changes measured as the fractal dimension and explained the possible cell lysis and denaturation as a result of heat treatment and chemical inhibitors. Results also showed that PPO enzyme was most suitable (higher vmax/Km ratio) for catechol, with a reduction in its affinity of 13.7-fold after the inhibition heat treatment. Overall, this work proposed a suitable and food-safe procedure for obtaining enriched polyphenol extract with low enzyme activity.

13.
Microsc Res Tech ; 82(5): 586-595, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30637865

RESUMO

Oriented immobilization of antibodies on a sensor surface is critical for enhancing both the antigen-binding capacity and the sensitivity of immunosensors. In this study, we describe a strategy to adsorb immunoglobulin G (IgG) anti-Brucella antibodies onto a silicon surface, oriented by protein A obtained from Staphylococcus aureus (SpA). X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize topographically, morphologically, and chemical changes of the sensor functionalization. The activity of the biosensor was assessed by confocal microscopy, scanning electronic microscopy, and bacteria capture assays (BCA). According to the BCA, the efficiency of Brucella abortus detection with the SpA-IgG anti Brucella biosensor was three-fold higher than that of the random orientated IgG anti Brucella biosensor. The limit of detection was 1 × 106 CFU/ml. These data show that the orientation of antibodies immobilization is crucial to developing immunosensors for bacterial antigen detection as Brucella spp and improve its sensibility level. Functionalization with protein A increases Brucella detection by an antibody-coated surface. Functionalized silicon surface for Brucella detection was characterized by atomic force microscopy, X-ray photoelectron spectroscopy and confocal microscopy.


Assuntos
Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/métodos , Brucella abortus/isolamento & purificação , Imunoensaio/métodos , Anticorpos Antibacterianos/imunologia , Brucella abortus/imunologia , Imunoglobulina G/imunologia , Sensibilidade e Especificidade
14.
J Sci Food Agric ; 96(3): 1027-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25821076

RESUMO

BACKGROUND: The search for natural, novel, high-quality, stable food ingredients is an ongoing practice in the food industry. Pulp of borojo (Borojoa patinoi Cuatrecasas), which is a fruit of the Colombian Pacific region, can be separated into three phases: liquid (LP), medium (MP) and solid (SP) phases. The objective of this work was to evaluate the effect of the three-phase composition and gum arabic on their glass transitions temperatures (T(g)). The best mixture, LP-MP, MP-SP and LP-SP and gum arabic (GA) was identified by response surface methodology. RESULTS: When adding GA to SP borojo phase in a 1:1 proportion, the resulting T(g) of the mixture was 132.27 °C whereas Tg for GA and SP-phase were 154.89 °C and 79.86 °C respectively, which supported this combination as attractive from a processing perspective and supports an industrial advantage of using borojo as food ingredient. Phases were characterized by high-performance liquid chromatography, Fourier transform infrared spectroscopy, confocal laser scanning microscopy and mass spectrometry. Low molecular weight compounds such as fructose for MP lowered T(g) whereas the presence of lignin increased T(g) of the mixtures as with the SP. CONCLUSIONS: The addition of GA significantly increased T(g) of borojo phases so leading to propose them as novel food processing materials.


Assuntos
Manipulação de Alimentos , Goma Arábica , Cromatografia Líquida de Alta Pressão , Colômbia , Indústria Alimentícia , Frutas , Vidro , Humanos , Temperatura de Transição
15.
Nat Prod Res ; 27(24): 2347-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24088175

RESUMO

Osteoarthritis is characterised by progressive loss of articular cartilage through the increase of catabolic metalloproteinases, and chondrocyte cytoskeleton disruption has also been reported. In this regard, we studied the effect of Heterotheca inuloides essential oil (HIEO) on the distribution and immunolocalisation of actin, vimentin and tubulin of chondrocytes from cultured rat articular cartilage explants in the presence of the cytoskeleton disassembly agent acrylamide. After 48 h, chondrocytes treated with acrylamide showed changes in actin immunolocalisation and shrinkage, loss of tubulin compartmentalisation and vimentin collapse and redistribution. However, the immunostaining pattern of these three proteins in acrylamide- and HIEO-treated chondrocytes simultaneously retained their typical characteristics. These results suggest that HIEO promotes protein cytoskeleton reorganisation without providing a preventive effect of acrylamide-associated disassembly. However, it is also possible that HIEO prevents vimentin disorganisation by chemical interaction with acrylamide.


Assuntos
Asteraceae/química , Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Citoesqueleto/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Animais , Células Cultivadas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...